emm……NTT 左转去看各位神犇的博客吧 QwQ
这里只贴代码及部分操作的推导过程。
# 首先是喜闻乐见的 NTT 多项式乘法板子
(这个就不解释了)
namespace NTT{ | |
ll lim, len; | |
inline ll qpow(ll a, ll b){ | |
ll res = 1; | |
while(b){ | |
if(b & 1) res = res * a % mod; | |
a = a * a % mod, b >>= 1; | |
} | |
return res; | |
} | |
inline void get_rev(cl n){ | |
lim = 1, len = 0; | |
while(lim < n) lim <<= 1, ++len; | |
for(int i = 0; i < lim; ++i) p[i] = (p[i >> 1] >> 1) | ((i & 1) << (len - 1)); | |
} | |
inline void ntt(ll A[], cl lim, cl type){ | |
for(int i = 0; i < lim; ++i) | |
if(i < p[i]) swap(A[i], A[p[i]]); | |
for(int mid = 1; mid < lim; mid <<= 1){ | |
ll Wn = qpow(type == 1 ? G : Gi, (mod - 1) / (mid << 1)); | |
for(int i = 0; i < lim; i += (mid << 1)){ | |
ll w = 1; | |
for(int j = 0; j < mid; ++j, w = w * Wn % mod){ | |
ll x = A[i + j], y = w * A[i + j + mid] % mod; | |
A[i + j] = (x + y) % mod; | |
A[i + j + mid] = (x - y + mod) % mod; | |
} | |
} | |
} | |
if(type == 1) return; | |
ll inv = qpow(lim, mod - 2); | |
for(int i = 0; i < lim; ++i) A[i] = A[i] * inv % mod; | |
} | |
inline void Mul(cl n, cl m, ll a[], ll b[]){ | |
get_rev(n + m); | |
ntt(a, lim, 1), ntt(b, lim, 1); | |
for(int i = 0; i < lim; ++i) a[i] = a[i] * b[i] % mod; | |
ntt(a, lim, -1); | |
} | |
} | |
using namespace NTT; |
# 紧跟着的是求逆
已知多项式 ,要求
设
那么
两边同时平方:
两边再同时乘上 ,由于 :
移一下项并提取公因多项式(:
inline void Inv(ll n, ll a[], ll b[]){ | |
if(n == 1) return b[0] = qpow(a[0], mod - 2), void(); | |
Inv((n + 1) >> 1, a, b); | |
get_rev(n << 1); | |
for(int i = 0; i < n; ++i) c[i] = a[i]; | |
for(int i = n; i < lim; ++i) c[i] = 0; | |
ntt(c, lim, 1), ntt(b, lim, 1); | |
for(int i = 0; i < lim; ++i) | |
b[i] = (2ll - c[i] * b[i] % mod + mod) * b[i] % mod; | |
ntt(b, lim, -1); | |
for(int i = n; i < lim; ++i) b[i] = 0; | |
} |
# 然后是多项式开根
我们已知 ,要求 使得
设
那么
还是两边同时平方:
由于 得:
那么事实上我的代码里的式子是这样的:
-1
inline void Sqrt(ll n, ll a[], ll b[]){ | |
if(n == 1) return b[0] = 1, void(); | |
Sqrt((n + 1) >> 1, a, b); | |
get_rev(n << 1); | |
memset(e, 0, sizeof(e)); | |
Inv(n, b, e); | |
for(int i = 0; i < n; ++i) d[i] = a[i]; | |
for(int i = n; i < lim; ++i) d[i] = 0; | |
ntt(d, lim, 1), ntt(e, lim, 1), ntt(b, lim, 1); | |
for(int i = 0; i < lim; ++i) b[i] = (b[i] + d[i] * e[i] % mod) * inv2 % mod; | |
ntt(b, lim, -1); | |
for(int i = n; i < lim; ++i) b[i] = 0; | |
} |
# 接着自然是是求 ln
这个就需要通道一点微积分的知识了,虽然我也不太会 QwQ,但是我会贺代码 (。・ω・。)
还是先来推推式子吧。
已知 ,求
众所周知, 的导数为 ,所以:
也就是说, 我们可以直接求出来了,下面给出不定积分的一个运算公式:
由于我们的
所以对每一项求个积分就完了,具体看代码吧。
namespace Ln{ | |
inline void Diff(cl n, ll a[], ll b[]){// 微分求导 | |
for(int i = 1; i < n; ++i) b[i - 1] = i * a[i]; | |
b[n - 1] = 0; | |
} | |
inline void Integral(cl n, ll a[], ll b[]){// 积分 | |
for(int i = 1; i < n; ++i) b[i] = a[i - 1] * qpow(i, mod - 2) % mod; | |
b[0] = 0; | |
} | |
inline void ln(cl n, ll a[], ll b[]){ | |
memset(f1, 0, sizeof(f1)); | |
memset(f2, 0, sizeof(f2)); | |
Diff(n, a, f1), Inv(n, a, f2);//f1(x) = a'(x),f2(x) = a(x)^(-1) | |
Mul(n, n, f1, f2);//f1(x) = f1(x) * f2(x) | |
Integral(n, f1, b);//g (x) = f (x) 的积分 | |
} | |
} | |
using namespace Ln; |
# exp 当然也不能少
已知 ,求 F(x)
emm…… 要用到泰勒展开,牛顿迭代什么的,然鹅我太蒻了,还不会 QwQ。
所以这里就只有结论了,像我这种蒟蒻还是全文背诵吧。
再经过一番清新简单的推导过程之后……
所以就可以算了……
inline void Exp(cl n, ll a[], ll b[]){ | |
if(n == 1) return b[0] = 1, void(); | |
Exp((n + 1) >> 1, a, b); | |
get_rev(n << 1); | |
ln(n, b, d);// d(x) = ln(b(x)) | |
for(int i = 0; i < n; ++i) e[i] = a[i]; | |
for(int i = n; i < lim; ++i) e[i] = 0; | |
ntt(d, lim, 1), ntt(e, lim, 1), ntt(b, lim, 1); | |
for(int i = 0; i < lim; ++i) b[i] = (1ll - d[i] + e[i] + mod) * b[i] % mod; | |
ntt(b, lim, -1); | |
for(int i = n; i < lim; ++i) b[i] = 0; | |
} |
# 最后是多项式除法
除法由于其优秀的边界故不和上面放到一起,并且这里给出完整代码。
以及我这里是计算出 和 后一块输出,由于计算 时需要多项式卷积一下,因此对 做了一遍 ,所以卷积完之后一定记得要 回来啊。
来看看推导过程。
已知 ,,求
首先就要用到一个神奇的操作,设 是 把系数反过来之后的多项式,即
容易发现,
然后就可以愉快的推式子啦 :)
是 次的, 是 次的, 是 次的, 是 次的,所以两边同乘 :
和 都是已知的(预处理一下即可), 就是 的系数倒过来。
计算出 之后 也就简单了:
一定要注意边界啊啊啊啊!
#include <bits/stdc++.h> | |
#define ll long long | |
using namespace std; | |
namespace IO{ | |
inline ll read(){ | |
ll x = 0; | |
char ch = getchar(); | |
while(!isdigit(ch)) ch = getchar(); | |
while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0', ch = getchar(); | |
return x; | |
} | |
template <typename T> inline void write(T x){ | |
if(x > 9) write(x / 10); | |
putchar(x % 10 + '0'); | |
} | |
inline void print(ll a[], ll n){ | |
for(int i = 0; i <= n; ++i) write(a[i]), putchar(' '); | |
puts(""); | |
} | |
} | |
using namespace IO; | |
const ll N = 3e5 + 10; | |
const ll mod = 998244353; | |
const ll G = 3, Gi = 332748118; | |
ll n, m; | |
ll c[N]; | |
ll f[N], g[N], fr[N], gr[N], ig[N]; | |
ll q[N], r[N], p[N]; | |
namespace NTT{ | |
ll lim, len; | |
inline ll qpow(ll a, ll b){ | |
ll res = 1; | |
while(b){ | |
if(b & 1) res = res * a % mod; | |
a = a * a % mod, b >>= 1; | |
} | |
return res; | |
} | |
inline void get_rev(int n){ | |
lim = 1, len = 0; | |
while(lim <= n) lim <<= 1, ++len; | |
for(int i = 0; i <= lim; ++i) p[i] = (p[i >> 1] >> 1) | ((i & 1) << (len - 1)); | |
} | |
inline void ntt(ll A[], ll lim, int type){ | |
for(int i = 0; i <= lim; ++i) | |
if(i < p[i]) swap(A[i], A[p[i]]); | |
for(int mid = 1; mid < lim; mid <<= 1){ | |
ll Wn = qpow(type == 1 ? G : Gi, (mod - 1) / (mid << 1)); | |
for(int i = 0; i < lim; i += (mid << 1)){ | |
ll w = 1; | |
for(int j = 0; j < mid; ++j, w = w * Wn % mod){ | |
ll x = A[i + j], y = w * A[i + j + mid] % mod; | |
A[i + j] = (x + y) % mod; | |
A[i + j + mid] = (x - y + mod) % mod; | |
} | |
} | |
} | |
if(type == 1) return; | |
ll inv = qpow(lim, mod - 2); | |
for(int i = 0; i <= lim; ++i) A[i] = A[i] * inv % mod; | |
} | |
inline void Mul(ll n, ll m, ll a[], ll b[]){ | |
get_rev(n + m); | |
ntt(a, lim, 1), ntt(b, lim, 1); | |
for(int i = 0; i <= lim; ++i) a[i] = a[i] * b[i] % mod; | |
ntt(a, lim, -1), ntt(b, lim, -1);//------------NTT 回来,NTT 回来,NTT 回来!!! | |
} | |
inline void Inv(ll n, ll a[], ll b[]){ | |
if(n == 0) return b[0] = qpow(a[0], mod - 2), void(); | |
Inv(n >> 1, a, b); | |
get_rev(n << 1); | |
for(int i = 0; i <= n; ++i) c[i] = a[i]; | |
for(int i = n + 1; i <= lim; ++i) c[i] = 0; | |
ntt(c, lim, 1), ntt(b, lim, 1); | |
for(int i = 0; i <= lim; ++i) b[i] = (2ll - c[i] * b[i] % mod + mod) * b[i] % mod; | |
ntt(b, lim, -1); | |
for(int i = n + 1; i <= lim; ++i) b[i] = 0; | |
} | |
} | |
using namespace NTT; | |
inline void Division(){ | |
for(int i = n - m + 1; i <= m; ++i) gr[i] = 0; | |
Inv(n - m, gr, ig); | |
Mul(n, n - m, fr, ig); | |
for(int i = 0; i <= n - m; ++i) q[i] = fr[n - m - i]; | |
Mul(n - m, m, g, q); | |
for(int i = 0; i < m; ++i) r[i] = (f[i] - g[i] + mod) % mod; | |
print(q, n - m); | |
print(r, m - 1); | |
} | |
signed main(){ | |
n = read(), m = read(); | |
for(int i = 0; i <= n; ++i) f[i] = read(), fr[n - i] = f[i]; | |
for(int i = 0; i <= m; ++i) g[i] = read(), gr[m - i] = g[i]; | |
Division(); | |
return 0; | |
} |
# 附:P5273 【模板】多项式幂函数 (加强版)
怒调 3h(
#include <bits/stdc++.h> | |
#define ll long long | |
using namespace std; | |
const int mod = 998244353; | |
const int G = 3, Gi = 332748118; | |
const int N = 3e5 + 10; | |
ll n, k, flag, phik; | |
namespace IO{ | |
inline ll read(){ | |
ll x = 0; | |
char ch = getchar(); | |
while(!isdigit(ch)) ch = getchar(); | |
while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0', ch = getchar(); | |
return x; | |
} | |
inline ll readk(){ | |
ll k = 0; | |
char ch = getchar(); | |
while(!isdigit(ch)) ch = getchar(); | |
while(isdigit(ch)){ | |
if((k << 3) + (k << 1) + ch - '0' > n) flag = 1; | |
k = ((k << 3) + (k << 1) + ch - '0') % mod; | |
phik = ((phik << 3) + (phik << 1) + ch - '0') % (mod - 1); | |
ch = getchar(); | |
} | |
return k; | |
} | |
template <typename T> inline void write(T x){ | |
if(x > 9) write(x / 10); | |
putchar(x % 10 + '0'); | |
} | |
} | |
using namespace IO; | |
ll A[N], B[N], c[N], lnb[N]; | |
ll lowa[N], lna[N]; | |
int p[N]; | |
ll f1[N], f2[N], f[N], g[N]; | |
inline ll qpow(ll a, int b){ | |
ll res = 1; | |
while(b){ | |
if(b & 1) res = res * a % mod; | |
a = a * a % mod, b >>= 1; | |
} | |
return res; | |
} | |
inline void clear(ll a[], int l, int r) {for(int i = l; i < r; ++i) a[i] = 0;} | |
inline void clone(ll a[], ll b[], int n) {for(int i = 0; i < n; ++i) a[i] = b[i];} | |
inline void print(ll a[], int n) {for(int i = 0; i < n; ++i) write(a[i]), putchar(' '); puts("");} | |
namespace NTT{ | |
int lim, len; | |
inline void get_rev(int n){ | |
lim = 1, len = 0; | |
while(lim < n) lim <<= 1, ++len; | |
for(int i = 0; i < lim; ++i) p[i] = (p[i >> 1] >> 1) | ((i & 1) << (len - 1)); | |
} | |
inline void ntt(ll A[], int lim, int type){ | |
for(int i = 0; i < lim; ++i) | |
if(i < p[i]) swap(A[i], A[p[i]]); | |
for(int mid = 1; mid < lim; mid <<= 1){ | |
ll Wn = qpow(type == 1 ? G : Gi, (mod - 1) / (mid << 1)); | |
for(int i = 0; i < lim; i += (mid << 1)){ | |
ll w = 1; | |
for(int j = 0; j < mid; ++j, w = w * Wn % mod){ | |
ll x = A[i + j], y = w * A[i + j + mid] % mod; | |
A[i + j] = (x + y) % mod; | |
A[i + j + mid] = (x - y + mod) % mod; | |
} | |
} | |
} | |
if(type == 1) return; | |
ll inv = qpow(lim, mod - 2); | |
for(int i = 0; i < lim; ++i) A[i] = A[i] * inv % mod; | |
} | |
inline void Mul(int n, int m, ll a[], ll b[]){ | |
get_rev(n + m); | |
clear(A, 0, lim), clear(B, 0, lim); | |
clone(A, a, n), clone(B, b, m); | |
ntt(A, lim, 1), ntt(B, lim, 1); | |
for(int i = 0; i < lim; ++i) A[i] = A[i] * B[i] % mod; | |
ntt(A, lim, -1); | |
clone(a, A, lim); | |
} | |
inline void Inv(int n, ll a[], ll b[]){ | |
if(n == 1) return b[0] = qpow(a[0], mod - 2), void(); | |
Inv((n + 1) >> 1, a, b); | |
get_rev(n << 1); | |
clone(c, a, n), clear(c, n, lim); | |
ntt(b, lim, 1), ntt(c, lim, 1); | |
for(int i = 0; i < lim; ++i) b[i] = (2ll - c[i] * b[i] % mod + mod) * b[i] % mod; | |
ntt(b, lim, -1); | |
clear(b, n, lim); | |
} | |
} | |
using namespace NTT; | |
namespace Poly{ | |
inline void Diff(int n, ll a[], ll b[]){ | |
for(int i = 1; i < n; ++i) b[i - 1] = i * a[i] % mod; | |
b[n - 1] = 0; | |
} | |
inline void Integral(int n, ll a[], ll b[]){ | |
for(int i = 1; i < n; ++i) b[i] = a[i - 1] * qpow(i, mod - 2) % mod; | |
b[0] = 0; | |
} | |
inline void Ln(int n, ll a[], ll b[]){ | |
get_rev(n << 1); | |
clear(f1, 0, lim), clear(f2, 0, lim); | |
Diff(n, a, f1), Inv(n, a, f2); | |
Mul(n, n, f1, f2); | |
Integral(n, f1, b); | |
} | |
inline void Exp(int n, ll a[], ll b[]){ | |
if(n == 1) return b[0] = 1, void(); | |
Exp((n + 1) >> 1, a, b); | |
get_rev(n << 1); | |
Ln(n, b, lnb); | |
for(int i = 0; i < n; ++i) lnb[i] = (a[i] - lnb[i] + mod) % mod; | |
lnb[0]++; | |
Mul(n, n, b, lnb), clear(b, n, lim); | |
} | |
inline void Qpow(int n, int k, ll a[], ll b[], ll phik){ | |
clear(b, 0, n); | |
int shift = 0; | |
while(!a[shift]) shift++; | |
if((ll)shift * k >= n) return; | |
n -= shift; | |
for(int i = 0; i < n; ++i) lowa[i] = a[i + shift]; | |
int low0 = lowa[0], inv0 = qpow(low0, mod - 2); | |
for(int i = 0; i < n; ++i) lowa[i] = lowa[i] * inv0 % mod; | |
Ln(n, lowa, lna); | |
for(int i = 0; i < n; ++i) lna[i] = lna[i] * k % mod; | |
Exp(n, lna, b); | |
shift *= k; | |
for(int i = n + shift - 1; i >= shift; --i) b[i] = b[i - shift] * qpow(low0, phik) % mod; | |
clear(b, 0, shift); | |
} | |
} | |
using namespace Poly; | |
int main(){ | |
n = read(), k = readk(); | |
for(int i = 0; i < n; ++i) f[i] = read(); | |
if(!flag || f[0]) Qpow(n, k, f, g, phik); | |
print(g, n); | |
return 0; | |
} |